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                                                  Abstract  

Climate variability is simply represented by teleconnection patterns such as the 

Arctic Oscillation (AO), Antarctic Oscillation (AAO), North Atlantic Oscillation (NAO), 

Pacific/North American Pattern (PNA), and Southern Oscillation (SO) with associated 

indices. Two approaches can be used to predict the indices: forward and backward 

methods. The forward method is commonly used to predict the index fluctuation  ρ  at 

time t with a given temporal incrementτ .  Using this method, it was found that the index 

(such as for NAO) has the Brownian fluctuations. On the base of the first passage time 

(FPT) concept, the backward method   is introduced in this study to predict the typical 

time span (τ ) needed to generate a fluctuation in the index of a given increment ρ . After 

the five monthly indices (AO, AAO, NAO, PNA, SO) running through the past history, 

the FPT density functions are obtained. FPT presents a new way to detect the temporal 

variability of the climate indices. The basic features for the index prediction are also 

discussed.  
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1. Introduction 

Complexity in climate systems makes the prediction difficult. One way to 

simplify the climate systems is to represent low-frequency variability of atmospheric 

circulations by teleconnection patterns, such as the Arctic Oscillation (AO), Antarctic 

Oscillation (AAO), North Atlantic Oscillation (NAO), Pacific/North American Pattern 

(PNA), and Southern Oscillation (SO). Temporally varying indices, s(t),  were calculated 

for these patterns. Here, t denotes time.  

Among them, the SO index (SOI) was first to use showing equivalent barotropic 

seasaw in atmospheric pressure between the southeastern tropical Pacific and the 

Australian-Indonesian regions (Walker and Bliss 1937). A popular formula for 

calculating the monthly SOI is proposed by the Australian Bureau of Meteorology,   

                                      diff diff

diff

( )
( ) 10

( )
p t p

s t
SD p

−
= × .                                            (1) 

Here, pdiff is the mean sea level pressure of Tahiti minus that of Dawin for that month; 

diffp   is the long term average of pdiff for the month in question; and SD(pdiff) is the long 

term standard deviation of pdiff  for the month in question. The SOI ranges from about –35 

to about +35.  

The indices of the other oscillations (AO, AAO, NAO, PNA) are the expansions 

of similar seasaw phenomenon such as the Northern Hemisphere annular mode [or called 

AO] and the two patterns (i.e., NAO and AO) as “two-paradigms of the same 

phenomenon” (Wallace 2000). These oscillation patterns are usually calculated on the 

base of the Rotated Principal Component Analysis (RPCA) (Barnston and Livezey 1987). 

Monthly (AO, AAO, NAO, PNA) indices are constructed by projecting the monthly 
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mean (1000-, 700-, 500-, 500-hPa) height anomalies onto the leading EOF mode. The 

time series are normalized by the standard deviation of the monthly index. Since the 

loading pattern of (AO, AAO, NAO, PNA) is obtained using the monthly mean height 

anomaly dataset, the index corresponding to each loading pattern becomes one when it is 

normalized by the standard deviation of the monthly index. Detailed information is 

referred to the website: http://www.cpc.noaa.gov/.   

Long-term time series of the climate indices represent invaluable sources of 

information to represent the complex seasonal, interannual, and interdecadal variabilities 

of the climate systems. For example, sustained negative values of the SOI often indicate 

El Nino episodes. These negative values are usually accompanied by sustained warming 

of the central and eastern tropical Pacific Ocean, a decrease in the strength of the Pacific 

trade winds, and a reduction in rainfall over eastern and northern Australia. Positive 

values of the SOI are associated with stronger Pacific trade wind and warmer sea 

temperatures to the north of Australia, popularly known as a La Nina episode. Waters in 

the central and eastern tropical Pacific Ocean become cooler during this time. Together 

these give an increased probability that eastern and northern Australia will be wetter than 

normal. The SOI has been used in numerous studies as an indicator of the status of the 

ENSO phenomenon and as a predictor for global and regional climatic prediction such as 

temperature (e.g., Smith and Sterns, 1993), precipitation (e.g., Ropelewski and Halpert, 

1987), and agricultural products (e.g., Rimmington and Nicholls, 1993). The other 

indices have similar features.  

How to predict effectively the climate indices has practical significance due to 

their connections to the large scale atmospheric circulations.  Usually, these indices are 
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treated as time series and statistical predictions are conducted (forward method). For 

example, the singular spectrum analysis (Keppenne and Ghil 1992), the wavelet analysis 

(Torrence and Campo 1998), and the nonlinear analog analysis (Drosdowsky 1994) were 

used to obtain the dominant frequencies of the SOI time series. The power-law 

correlations were found for the self-affine properties of SOI (Ausloos and Ivanova 2001).  

It may possible use an alternative “backward” method, which predicts a typical 

time span (τ ) needed to generate a fluctuation in the index of a given increment ρ .  This 

method is established on the base of the first passage time (FPT) concept, which is widely 

used in many disciplines such as physics, chemistry, biology, and economics, etc.,  but 

not in meteorology until recently when Chu et al. (2002a, b) used FPT to study the ocean-

atmospheric model predictability.   The major purpose of this paper is to show the 

usefulness of FTP on the climate index prediction.  

The rest of the paper is outlined as follows. Section 2 discusses the two 

approaches to predict the climate indices. Section 3 shows the FPT concept, applied in 

this paper. Section 4 investigates the sensitivity of the FPT density function to the index 

reduction ρ . Section 5 shows the power-law dependence of optimal FPT on the index 

reduction density ρ and classifies the variability of the climate indices as the Brownian 

motion using the FPT. Finally, Section 6 presents the conclusions.  

2. Forward and Backward Approaches of Prediction  

Monthly varying climate indices from the NOAA Climate Prediction Center show 

randomness (Figure 1) with poor predictability because their phases and amplitudes are 

rather unpredictable with both involving many (time and space) scales which are often 

intrinsic to chaotic behavior; see reviews for the NAO index (Palmer 2000; Greatbatch 
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2000; Wanner et al. 2001). The histograms of the monthly mean indices show Gaussian-

type distributions with mean values near-zero for all the indices (AO: -0.136, AAO:         

-0.01, NAO: -0.004, PNA: 0.018, SOI: -0.077) and with standard deviations near 1 for 

AO (0.981), AAO (0.989), NAO (0.985), and near 10 for SOI (10.5) (Figure 2).  

Both forward and backward approaches exist in index prediction.  The forward 

approach predicts the change of the index ( ρ ) at time t with a given temporal 

incrementτ  from analyzing single or multiple time series. Due to stochastic nature, the 

probability density function (PDF), [ ]( ),p tρ τ ,  should be first constructed. Collette and 

Ausloos (2004) analyzed the NAO monthly index (single time series) from 1825 till 2002 

and found that the long range time correlations are similar to Brownian fluctuations. The 

distribution functions of the NAO monthly index fluctuations have a form close to a 

Gaussian, for all time lags. This indicates the lack of predictive power of the present 

NAO monthly index. Lind et al. (2005) used the standard Markov analysis  to get the 

Chapman-Kolmogorov equation for the conditional PDF of the increments ρ  of the 

NAO index over different time intervals τ  and to compute the diffusion and drift 

coefficients (D(1), D(2)) from the first two moments of such probability distribution. The 

random variable ( )tρ  is found to satisfy the Langevin equation  

                        [ ] [ ](1) (2)( ) ( ), ( ) ( ),d t D t t t D t t
dt
ρ ρ η ρ= +                            (2) 

where ( )tη  is a fluctuating δ -correlated force with Gaussian statistics, i.e.,  

 ( ) ( ') 2 ( ')t t t tη η δ= − . 

Maharaj and Wheeler (2005) predict the daily bi-variate index (multiple time series) of 

the Madden-Julian oscillation using seasonally varying vector autoregressive (VAR) 
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models. The first-order VAR model on the original (non-differenced) time series was 

found to be the most satisfactory for forecasting the index beyond a few days. Although 

this model shows no strong skill advantage over a lagged regression technique, it has the 

convenience of employing only a single set of equations to make predictions for multiple 

forecast horizons. 

 The backward approach predicts the typical time span (τ ) needed to generate a 

fluctuation in the index of a given increment ρ .  To do so, the FPT concept is used. As 

the index date runs through the past history, the accumulated values of the FPTs form the 

PDF (called FPT density function). The mode of the PDF shows the most probable time 

when the index decreases with the value of ρ at the first time.   

The FPT is important from a prediction point of view in several ways. First, 

although the climate indices are related to certain circulation patterns such as the negative 

SOI values generally connecting to the El Nino events, one still does not know the exact 

time of the El Nino onset. Therefore, the best one can do, from a statistical point of view, 

is to make a prediction at a time that is probabilistically favorable. This optimal time, as 

we will see, is determined by the maximum of the FPT density function, i.e. the optimal 

FPT. Second, but not least, the FPT density function will by itself give invaluable, non-

trivial information about the stochasticity of the climate indices. Third, FPT effectively 

represents the ocean-atmospheric model predictability (Chu et al., 2002a, b).    

3. FPT 

In a series papers, Chu et al. (2002a) introduced the FPT (τ ) concept into the 

ocean-atmospheric model predictability with the model error (i.e., ‘some quantity’) first 

exceeding a predetermined tolerance level (i.e., ‘predetermined criterion’), found the FPT 
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density function satisfying the backward Fokker-Planck equation, and obtained the 

analytical solution of the FPT density function for the nonlinear simplified low-order 

Lorenz atmospheric model (Nicolis 1992). Both linear and nonlinear perspectives of 

forecast errors are analytically investigated (Chu et al. 2002b). Furthermore, the FPT was 

also used to evaluate the full physical nowcast/forecast ocean prediction system. For 

example, the FPT density function is asymmetric with a broader and long tail in higher 

value side, which indicates long-term predictability. The long-term (extreme long) 

predictability is not an “outlier” and shares   the same statistical properties as the short-

term predictions (Chu et al. 2002c). The FPT is also used to verify the model ability to 

predict Lagrangian drifter trajectories (Chu et al. 2004) and the regional ocean model 

predictability to stochastic perturbations in initial conditions, winds, and open boundary 

conditions (Chu et al. 2005).   

Using the same concept, the FPT is used to explore the statistical features of the 

time series of climate indices. They change either positively or negatively at a given time 

(Figure 1).  Then, of course, it is interested in predicting the exact change at a point in 

time. However, it is not possible. Therefore, the best one can do, from a statistical point 

of view, is to predict the time that is probabilistically favorable for the given index 

change. This optimal time, as we will see, is determined by the maximum of the first 

passage time distribution, i.e. the optimal FPT.  

Given a fixed value of an index reduction ( ρ ), the corresponding time span 

(positive) is estimated for which the index reduction   

                                       ( ) ( ) ( )t t s t t s tγ ∆ = + ∆ − ,                                             (3) 

reaches the level ρ for the first time,   
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                                 { }( ) inf 0 | ( )tt t tρτ γ ρ∆= ∆ > ≤ − ,                                     (4) 

which is called the FPT. It is noted that similar definition can be used for the index 

enhancement.  As the index data run through the past history which is represented by (2), 

the FPT density function satisfies the backward Fokker-Planck equation (Chu et al. 

2002a) 

                                   
2

(1) (2) (2)
2

1( , ) ( , ) 0.
2

p p pD t D t
t

ρ η ρ
ρ ρ

∂ ∂ ∂⎡ ⎤− − =⎣ ⎦∂ ∂ ∂
                         (5)                  

The cumulative distribution is introduced for the transition time being larger than ρτ , i.e. 

                                              ( ) ( )P p d
ρ

ρ τ
τ τ τ

∞
= ∫ .                                           (6) 

All the five climate indices show similar Gaussian-type distributions (Figure 2). 

The Brownian fluctuations identified in NAO monthly index (Collette and Ausloos 2004) 

may extend to the other indices. For the Brownian fluctuations with zero drift, the FPT 

density function has the analytical solution for finite ρ (Rangarajan and Ding 2000),  

             
2

3/ 2

1( ) exp ,   0,   0a ap aτ τ
τ τπ

⎛ ⎞
= − > >⎜ ⎟

⎝ ⎠
.                                         (7) 

Here,  a is a function of ρ . With 0ρ →  as a limit case (i.e., no index reduction), the 

FPT tends to 0 with a probability of 100%. Thus, the FPT density function cannot be 

represented by (7) but the δ function,  

                                       ( ) ( ),    as  0p τ δ τ ρ→ → .  

The maximum value of ( )p τ (for finite ρ ) indicates the most favorable FPT,  

                                                          
2

(max) 2
3
a

ρτ = .                                                      (8) 
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With the known FPT density function (7), the k-th moment (k = 1, 2, …) of  FPT for 

finite ρ is  calculated  by   

                           -1

0

( ) ( ) ,           1,...,k
kM k p d kρ τ τ τ

∞

= = ∞∫ .                             (9)     

The mean and variance of FPT can be calculated from the first two moments                                                    

                                                         1 Mρτ = ,                                                        (10)                                   

                                               2 2
2 1M Mρδτ = − ,                                                        (11) 

where the bracket  denotes the  average over realizations.   

4. Sensitivity of p( ρτ ) with Respect to ρ  

The theoretical distribution (7) solely depends on the parameter a. This parameter 

can be determined from the monthly index data. First, the FPT density functions are 

constructed and fitted to (7) for each index with various values of index reduction ρ .   

For example, Figure 3 shows ( )p ρτ  with 1.9ρ =  for (AO, AAO, NAO, PNA) indices 

and with 25ρ =  for SOI. Note that almost an order of difference in ρ -values (1.9 versus 

25) is selected. This is due to the different ranges of index fluctuation: (-4, 4) for (AO, 

AAO, NAO, PNA) indices and (-40, 40) for SOI.  It exhibits a rather well defined and 

pronounced maximum, followed by an extended tail for very long FPTs indicating a non-

zero and important probability of large passage times (note that the ρτ -axis is 

logarithmic). These long (toward El Nino for SOI) FPTs reflect periods where the 

tropical Pacific is in a strong El Nino phase and needs  a long period of time before 

finally coming to an even stronger El Nino. The short FPTs on the other hand – those 
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around the maximum – are in La Nina periods, which appear to be the most common 

scenario.  

Second, for each index reduction ( ρ ), the parameter (a) is determined from the 

ρτ  data fitted to (7). From the scatter diagram for each index (Figure 4), the linear 

relationship between (a, ρ ),  

                                                   1 2a α α ρ= + ,                                                          (12) 

is  found using the least square method. Here, Eq.(12) represents the (NAO, NPA,  SOI) 

indices quite well, but not too well for the (AO, AAO) indices since oscillations around 

the linear trend are found.  Despite oscillations, the linear correlation between a and ρ  is 

very evident with positive regression coefficient 2α  (Table 1).   

              To better understand the tail of this distribution, various values of ρ are 

considered. If this level is small enough, it is likely that the index reduction will break 

through the level after the first month, while larger FPTs will become more and more 

unlikely. However, the probability for a large FPT value will not be zero; if, say, a small 

level ρ , then a period of strong El Nino  will result in a ( )tρτ  that might be considerably 

larger than one month since it takes time to recover from the El Nino event. For instance, 

after the 1992 El Nino event, it took five years to reach a new El Nino event in 1997.    

 5. Characteristics of the Index Variability – Brownian Motion 

A random process is called fractional Brownian motion if its cumulative FPT 

density function satisfies the power law (Ding and Yang 1995),  

                                              ( )P τ ~ 1Hτ − ,                                                         (13) 
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with 0 1H< < . Here H is the Hurst exponent.  For H = 1/2, the random process is the 

ordinary Brownian motion.   The cumulative distribution, ( ),P ρτ  for each climate index 

data (Figure 5) shows a power law feature in the tail of the distribution scales. For a very 

small value of the index reduction, 0ρ  (0.01 for the AO, AAO, NAO, and PNA indices 

and 0.1 for SOI), the cumulative FPT density function calculated from the index data 

shows that  

                                               0( )P τ ~ 0
0
ατ − ,                                                      (14) 

with 0α ~1/2.   Since the Hurst exponent of an ordinary Brownian motion is H = 1/2, the 

empirically observed scaling (see Figure 5) is a consequence of the (at least close to) 

Brownian motion behavior of the climate indices. This argument of an unbiased 

Brownian motion is also strengthen by observing that (see Figure 5) 

                                             0( 1)P τ = ~1/2.                                                    (15) 

This indicates that the climate index has 50% chance of increase and decrease at each 

time step (one month).  

Figure 5 also shows the cumulative distributions ( )P ρτ  for different values of ρ , 

i.e.,  ρ  = 0.5, 1.0,  and 1.5 for the (AO, AAO, NAO, PNA) indices and ρ = 10, 20, and 

30 for SOI.  From this figure it is seen that the tail exponent, ρα , is rather insensitive to 

the value of ρ . In particular one finds that ρα ~1/2 over a broad range of values for ρ , a 

value that is consistent with the Brownian motion hypothesis.    

 Moreover, it is noted that as the level ρ  is increased from zero, the optimal FPT 

( (max)
ρτ ) moves away from 0 1τ =  and toward larger values. How does the optimal FPT 
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(max)
ρτ  depend on the level ρ  for large ρ ? This dependence, as measured from the 

empirical distribution (i.e., the histogram of FPT), is shown in Figure 6. Intuitively, it is 

clear that the optimal FPT will increase as ρ  increases.  

The power law is found for the optimal FPT versus ρ ,  

                                          (max)
ρτ ~   for large γρ ρ ,                                           (16) 

with  γ ~2.0  for the AO, AAO, and SO indices and γ ~1.0  for the NAO and PNA 

indices (see Figure 7),  which  consists with the results for a Brownian motion with the 

theoretical FPT density function [see (7) and (8)].  Substituting (12) into (8) gives  

                                      (max) 2 2 2
2 1 2 1 +2ρτ α ρ α α ρ α= + .                                     (17) 

The exponent of the power-law depends on the regression coefficients ( 1 2,α α ) (see Table 

-1).  Large ρ  usually means much larger than 1 for the SOI, and slightly larger than 1 for 

the AO, AAO, NAO, and PNA indices. For the SOI, the regression coefficients are given 

by 1 20.165,   0.125α α= = , the leading term of (17) is 2 2
2α ρ , and therefore, the exponent 

of the power-law is around 2. For the AO and AAO indices, 2α is larger than 1α . The 

leading term of (17) is 2 2
2α ρ  for large ρ , and therefore, the exponent of the power-law is 

around 2. However, for the NAO and PNA indices,   2α is smaller than 1α . The leading 

term of (17) is 1 22α α ρ  for large ρ , and therefore, the exponent of the power-law is 

around 1. Not surprisingly, there are some deviations from standard theories for the 

variation of the optimal FPT with the level ρ  (i.e., the straight line). Furthermore, we 

have checked, and found, that there is an approximate symmetry under  

 ρ ρ→ −  
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for the FPT density function. One therefore does not have to consider index enhancement 

explicitly.  

6. Conclusions 

(1) FPT presents a new way to detect the temporal variability of the climate 

indices.  It predicts a typical time span (τ ) needed to generate an index reduction of a 

given increment ρ . FPT is a random variable and whose density function satisfies the 

backward Fokker-Planck equation. Solving this equation, it is easy to obtain the ensemble 

mean and variance of the FPT of the climate indices.  

(2) FPTs for the five climate indices show the Brownian fluctuations. This means 

that the early results on the Brownian fluctuations for the NAO index (e.g., Collette and 

Ausloos 2004) are also valid for the other indices (AO, AAO, PNA, and SO). With 

0δ →  as a limit case (i.e., no index reduction), the FPT density function tends to the 

δ function.    

(3) For a very small value of the index reduction, 0ρ  (0.01 for the AO, AAO, 

NAO, and PNA indices and 0.1 for SOI), the cumulative FPT density function shows the 

power-law dependence on ρτ with the exponent approximately -1/2. Another well known 

method to check power-law dependence is examination of the autocorrelation function. 

This also confirms that the climate indices have the Brownian-type fluctuations.  

(4) The optimal FPT has a power-law dependence on the index reduction ( ρ ) for 

large ρ  with the exponent (~2) for the AO, AAO and SO indices and (~1) for the NAO 

and PNA indices.   

(5) The FPT density functions as well as the variation of the optimal FPT can be 

applied if one wants to estimate the most probable time period needed for the low-
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frequency atmospheric circulation pattern to sustain if a prediction aims at a specific 

optimal transition.  

(6) The FPT analysis can be applied to other air-ocean time series.   
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                                 Table Captions   

Table 1. Coefficients ( 1 2,α α ) in Eq.(12) for the five climate indices. 
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                                             Figure Captions 

Figure 1.  The monthly mean climate index data obtained from NOAA Climate 

Prediction Center for: (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) 

North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 

Southern Oscillation (SO). Detailed information is referred to the website: 

http://www.cpc.noaa.gov/.   

 

Figure 2. Histograms of the climate indices: (a) Arctic Oscillation (AO), (b) Antarctic 

Oscillation (AAO), (c) North Atlantic Oscillation (NAO), (d) Pacific/North American 

Pattern (PNA), and (e) Southern Oscillation (SO).  

 

Figure 3. FPT density functions with particular index reduction ρ for (a) Arctic 

Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) North Atlantic Oscillation (NAO), 

(d) Pacific/North American Pattern (PNA), and (e) Southern Oscillation (SO). 

 

Figure 4. Linear relation ship between the parameter a in the FPT density function and 

the index reduction δ for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), 

(c) North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 

Southern Oscillation (SO). 

 

Figure 5. The empirical cumulative density functions, ( ),P ρτ  for different values of the 

index reduction ρ  for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) 
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North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 

Southern Oscillation (SO). It shows the power-law features. 

 

Figure 6.  FPT density function of SOI with different values of ρ : (a) 15, (b) 20, (c) 25, 

and (d) 30. It is noted that the optimal FPT increases as ρ  increases.  

 

Figure 7. Dependence of the optimal FPT, (max) ,ρτ  on the index reduction ρ for (a) Arctic 

Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) North Atlantic Oscillation (NAO), 

(d) Pacific/North American Pattern (PNA), and (e) Southern Oscillation (SO). Power-law 

exists for large ρ  values.  
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Table 1. Coefficients ( 1 2,α α ) in Eq.(12) for the five climate indices.  

 
 AO AAO NAO PNA SO 

1α  0.430 0.508 0.604 0.600 0.165 

2α  0.696 0.562 0.351 0.373 0.125 
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Figure 1.  The monthly mean climate index data obtained from NOAA Climate 
Prediction Center for: (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) 
North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 
Southern Oscillation (SO). Detailed information is referred to the website: 
http://www.cpc.noaa.gov/.   
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Figure 2. Histograms of the climate indices: (a) Arctic Oscillation (AO), (b) Antarctic 
Oscillation (AAO), (c) North Atlantic Oscillation (NAO), (d) Pacific/North American 
Pattern (PNA), and (e) Southern Oscillation (SO).  
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 Figure 3. FPT density functions with particular index reduction ρ for (a) Arctic 
Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) North Atlantic Oscillation (NAO), 
(d) Pacific/North American Pattern (PNA), and (e) Southern Oscillation (SO). 
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Figure 4. Linear relation ship between the parameter a in the FPT density function and 
the index reduction δ for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), 
(c) North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 
Southern Oscillation (SO). 
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Figure 5. The empirical cumulative density functions, ( ),P ρτ  for different values of the 
index reduction ρ  for (a) Arctic Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) 
North Atlantic Oscillation (NAO), (d) Pacific/North American Pattern (PNA), and (e) 
Southern Oscillation (SO). It shows the power-law features.  
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Figure 6.  FPT density function of SOI with different values of ρ : (a) 15, (b) 20, (c) 25, 
and (d) 30. It is noted that the optimal FPT increases as ρ  increases.  
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Figure 7. Dependence of the optimal FPT, (max) ,ρτ  on the index reduction ρ for (a) Arctic 
Oscillation (AO), (b) Antarctic Oscillation (AAO), (c) North Atlantic Oscillation (NAO), 
(d) Pacific/North American Pattern (PNA), and (e) Southern Oscillation (SO). Power-law 
exists for large ρ  values.  
 


